Penalized and constrained LAD estimation in fixed and high dimension
نویسندگان
چکیده
منابع مشابه
L1 penalized LAD estimator for high dimensional linear regression
In this paper, the high-dimensional sparse linear regression model is considered, where the overall number of variables is larger than the number of observations. We investigate the L1 penalized least absolute deviation method. Different from most of other methods, the L1 penalized LAD method does not need any knowledge of standard deviation of the noises or any moment assumptions of the noises...
متن کاملThe L1L1 penalized LAD estimator for high dimensional linear regression
In this paper, the high-dimensional sparse linear regression model is considered, where the overall number of variables is larger than the number of observations. We investigate the L1 penalized least absolute deviation method. Different from most of other methods, the L1 penalized LAD method does not need any knowledge of standard deviation of the noises or any moment assumptions of the noises...
متن کاملSize constrained clustering problems in fixed dimension
Clustering or cluster analysis [1] is a classical method in unsupervised learning and one of the most used techniques in statistical data analysis. Clustering has a wide range of applications in many areas like pattern recognition, medical diagnostics, data mining, biology, market research and image analysis among others. A cluster is a set of data points that in some sense are similar to each ...
متن کاملPenalized robust regression in high-dimension
We discuss the behavior of penalized robust regression estimators in high-dimension and compare our theoretical predictions to simulations. Our results show the importance of the geometry of the dataset and shed light on the theoretical behavior of LASSO and much more involved methods.
متن کاملhigh volatility, thick tails and extreme value theory in value at risk estimation: the case of liability insurance in iran insurance company
در این بررسی ابتدا به بررسی ماهیت توزیع خسارات پرداخته میشود و از روش نظریه مقادیر نهایی برای بدست آوردن برآورد ارزش در معرض خطر برای خسارات روزانه بیمه مسئولیت شرکت بیمه ایران استفاده میشود. سپس کارایی نظریه مقدار نهایی در برآورد ارزش در معرض خطر با کارایی سایر روشهای واریانس ، کواریانس و روش شبیه سازی تاریخی مورد مقایسه قرار میگیرد. نتایج این بررسی نشان میدهند که توزیع ،garch شناخته شده مدل...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical Papers
سال: 2021
ISSN: 0932-5026,1613-9798
DOI: 10.1007/s00362-021-01229-0